
Migration Guide for the Next Scripting

Language

Gustaf Neumann
<neumann@wu-wien.ac.at>
version 2.3.0, May 2019

Table of Contents

<p>JavaScript must be enabled in your browser to display the table of contents.</p>
1. Differences Between XOTcl and NX

1.1. Features of NX
1.2. NX and XOTcl Scripts
1.3. Using XOTcl 2.0 and the Next Scripting Language in a Single Interpreter

2. XOTcl Idioms in the Next Scripting Language
2.1. Defining Objects and Classes
2.2. Defining Methods

2.2.1. Scripted Methods Defined in the Init-block of a Class/Object or with Separate Calls
2.2.2. Different Kinds of Methods
2.2.3. Method Modifiers and Method Protection
2.2.4. Method Deletion

2.3. Resolvers
2.3.1. Invoking Methods
2.3.2. Accessing Own Instance Variables from Method Bodies
2.3.3. Accessing Instance Variables of other Objects

2.4. Parameters
2.4.1. Parameters for Configuring Objects: Variables and Properties
2.4.2. Delete Variable Handlers
2.4.3. Method Parameters
2.4.4. Return Value Checking

2.5. Interceptors
2.5.1. Register Mixin Classes and Mixin Guards
2.5.2. Register Filters and Filter Guards

2.6. Introspection
2.6.1. List sub- and superclass relations
2.6.2. List methods defined by classes
2.6.3. List methods defined by objects
2.6.4. Check existence of a method
2.6.5. List callable methods
2.6.6. List object/class where a specified method is defined
2.6.7. List definition of scripted methods
2.6.8. List Configure Parameters
2.6.9. List Variable Declarations (property and variable)
2.6.10. List Slots
2.6.11. List Filter or Mixins
2.6.12. List definition of methods defined by aliases, setters or forwarders
2.6.13. List Method-Handles
2.6.14. List type of a method
2.6.15. List the scope of mixin classes
2.6.16. Check properties of object and classes
2.6.17. Call-stack Introspection

2.7. Other Predefined Methods
2.8. Dispatch, Aliases, etc.
2.9. Assertions
2.10. Method Protection

- 1 -

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

mailto:neumann@wu-wien.ac.at

3. Incompatibilities between XOTcl 1 and XOTcl 2
3.1. Resolvers
3.2. Parameters

3.2.1. Parameter usage without a value
3.2.2. Ignored Parameter definitions
3.2.3. Changing classes and superclasses
3.2.4. Overwriting procs/methods with objects and vice versa
3.2.5. Info heritage

3.3. Slots
3.4. Obsolete Commands
3.5. Stronger Checking
3.6. Exit Handlers

Abstract

This document describes the differences between the Next Scripting Language Framework and
XOTcl 1. In particular, it presents a migration guide from XOTcl 1 to NX, and presents potential
incompatibilities between XOTcl 1 and XOTcl 2.

The Next Scripting Language (NX) is a successor of XOTcl 1 and is based on 10 years of experience
with XOTcl in projects containing several hundert thousand lines of code. While XOTcl was the first
language designed to provide language support for design patterns, the focus of the Next Scripting
Framework and NX are on combining this with Language Oriented Programming. In many respects, NX
was designed to ease the learning of the language by novices (by using a more mainstream terminology,
higher orthogonality of the methods, less predefined methods), to improve maintainability (remove
sources of common errors) and to encourage developer to write better structured programs (to provide
interfaces) especially for large projects, where many developers are involved.

The Next Scripting Language is based on the Next Scripting Framework which was developed based on
the notion of language oriented programming. The Next Scripting Frameworks provides C-level support
for defining and hosting multiple object systems in a single Tcl interpreter. The whole definition of
NX is fully scripted (e.g. defined in nx.tcl). The Next Scripting Framework is shipped with three
language definitions, containing NX and XOTcl 2. Most of the existing XOTcl 1 programs can be
used without modification in the Next Scripting Framework by using XOTcl 2. The Next Scripting
Framework requires Tcl 8.5 or newer.

Although NX is fully scripted (as well as XOTcl 2), our benchmarks show that scripts based on NX are
often 2 or 4 times faster than the counterparts in XOTcl 1. But speed was not the primary focus on the
Next Scripting Environment: The goal was primarily to find ways to repackage the power of XOTcl in
an easy to learn environment, highly orthogonal environment, which is better suited for large projects,
trying to reduce maintenance costs.

We expect that many user will find it attractive to upgrade from XOTcl 1 to XOTcl 2, and some other
users will upgrade to NX. This document focuses mainly on the differences between XOTcl 1 and NX,
but addresses as well potential incompatibilities between XOTcl 1 and XOTcl 2. For an introduction to
NX, please consult the NX tutorial.

1. Differences Between XOTcl and NX

The Next Scripting Framework supports Language Oriented Programming by providing means to
define potentially multiple object systems with different naming and functionality in a single
interpreter. This makes the Next Scripting Framework a powerful instrument for defining multiple
languages such as e.g. domain specific languages. This focus differs from XOTcl 1.

Technically, the language framework approach means that the languages implemented by the Next

1. Differences Between XOTcl and NX

- 2 -

1.1. Features of NX

Scripting Framework (most prominently XOTcl 2 and NX) are typically fully scripted and can be loaded
via the usual Tcl package require mechanism.

Some of the new features below are provided by the Next Scripting Framework, some are implemented
via the script files for XOTcl 2 and NX.

In general, the Next Scripting Language (NX) differs from XOTcl in the following respects:

1. Stronger Encapsulation: The Next Scripting Language favors a stronger form of
encapsulation than XOTcl. Calling the own methods or accessing the own instance variables is
typographically easier and computationally faster than these operations on other objects. This
behavior is achieved via resolvers, which make some methods necessary in XOTcl 1 obsolete
in NX (especially for importing instance variables). The encapsulation of NX is stronger than
in XOTcl but still weak compared to languages like C++; a developer can still access other
objects' variables via some idioms, but NX makes accesses to other objects' variables explicit.
The requiredness to make these accesses explicit should encourage developer to implement
well defined interfaces to provide access to instance variables.

2. Additional Forms of Method Definition and Reuse: The Next Scripting Language
provides much more orthogonal means to define, reuse and introspect scripted and C-
implemented methods.

a. It is possible to use NX alias to register methods under arbitrary names for
arbitrary objects or classes.

b. NX provides means for method protection (method modifiers public, protected,
and private). Therefore developers have to define explicitly public interfaces in
order to use methods from other objects.

c. One can invoke in NX fully qualified methods to invoke methods outside the
precedence path.

d. One can define in NX hierarchical method names (similar to commands and
subcommands, called method ensembles) in a convenient way to provide extensible,
hierarchical naming of methods.

e. One can use in NX the same interface to query (introspect) C-implemented and
scripted methods/commands.

3. Orthogonal Parameterization: The Next Scripting Language provides an orthogonal
framework for parametrization of methods and objects.

a. In NX, the same argument parser is used for

▪ Scripted Methods

▪ C-implemented methods and Tcl commands

▪ Object Parametrization

b. While XOTcl 1 provided only value-checkers for non-positional arguments for
methods, the Next Scripting Framework provides the same value checkers for
positional and non-positional arguments of methods, as well as for positional and
non-positional configure parameters (-parameter in XOTcl 1).

c. While XOTcl 1 supported only non-positional arguments at the begin of the argument
list, these can be used now at arbitrary positions.

4. Value Checking:

a. The Next Scripting Language supports checking of the input parameters and the
return values of scripted and C-implemented methods and commands.

1. Differences Between XOTcl and NX

- 3 -

1.2. NX and XOTcl Scripts

b. NX provides a set of predefined checkers (like e.g. integer, boolean, object, …)
which can be extended by the applications.

c. Value Checking can be used for single and multi-valued parameters. One can e.g.
define a list of integers with at least one entry by the parameter specification
integer,1..n.

d. Value Checking can be turned on/off globally or on the method/command level.

5. Scripted Init Blocks: The Next Scripting Language provides scripted init blocks for objects
and classes (replacement for the dangerous dash "-" mechanism in XOTcl that allows one to
set variables and invoke methods upon object creation).

6. More Conventional Naming for Predefined Methods: The naming of the methods in
the Next Scripting Language is much more in line with the mainstream naming conventions
in OO languages. While for example XOTcl uses proc and instproc for object specific and
inheritable methods, NX uses simply method.

7. Profiling Support: The Next Scripting Language provides now two forms of profiling

◦ Profiling via a DTrace provider (examples are e.g. in the dtrace subdirectory of the
source tree)

◦ Significantly improved built-in profiling (results can be processed in Tcl).

8. Significantly Improved Test Suite: The regression test suite of Next Scripting Scripting
framework contain now more than 5.000 tests, and order of magnitude more than in XOTcl
1.6

9. Much Smaller Interface: The Next Scripting Language has a much smaller interface (i.e.
provides less predefined methods) than XOTcl (see Table 1), although the expressiveness was
increased in NX.

Table 1. Comparison of the Number of
Predefined Methods in NX and XOTcl

NX XOTcl

Methods for Objects 14 51

Methods for Classes 9 24

Info-methods for Objects 11 25

Info-methods for Classes 11 24

Total 45 124

This comparison list compares mostly XOTcl 1 with NX, some features are also available in XOTcl 2 (2a,
2c 2d, 3, 4).

Below is a small, introductory example showing an implementation of a class Stack in NX and
XOTcl. The purpose of this first example is just a quick overview. We will go into much more detailed
comparison in the next sections.

NX supports a block syntax, where the methods are defined during the creation of the class. The XOTcl
syntax is slightly more redundant, since every definition of a method is a single toplevel command
starting with the class name (also NX supports the style used in XOTcl). In NX, all methods are per

1. Differences Between XOTcl and NX

- 4 -

1.3. Using XOTcl 2.0 and the Next Scripting Language in a Single

Interpreter

default protected (XOTcl does not support protection). In NX methods are defined in the definition of
the class via :method or :public method. In XOTcl methods are defined via the instproc method.

Another difference is the notation to refer to instance variables. In NX, instance variable are named
with a single colon in the front. In XOTcl, instance variables are imported using instvar.

Stack example in NX Stack example in XOTcl

Class create Stack {

#
Stack of Things
#

:variable things ""

:public method push {thing} {
set :things [linsert ${:things} 0 $thing]
return $thing

}

:public method pop {} {
set top [lindex ${:things} 0]
set :things [lrange ${:things} 1 end]
return $top

}
}

#
Stack of Things
#

Class Stack

Stack instproc init {} {
my instvar things
set things ""

}

Stack instproc push {thing} {
my instvar things
set things [linsert $things 0 $thing]
return $thing

}

Stack instproc pop {} {
my instvar things
set top [lindex $things 0]
set things [lrange $things 1 end]

}

In general, the Next Scripting Framework supports multiple object systems concurrently. Effectively,
every object system has different base classes for creating objects and classes. Therefore, these object
systems can have different interfaces and names of built-in methods. Currently, the Next Scripting
Framework is packaged with three object systems:

• NX

• XOTcl 2.0

• TclCool

XOTcl 2 is highly compatible with XOTcl 1, the language NX is described below in more details, the
language TclCool was introduced in Tip#279 and serves primarily an example of a small OO language.

A single Tcl interpreter can host multiple Next Scripting Object Systems at the same time. This fact
makes migration from XOTcl to NX easier. The following example script shows to use XOTcl and NX in
a single script:

Using Multiple Object Systems in a single Script

namespace eval mypackage {

package require XOTcl 2.0

Define a class with a public method foo using XOTcl
xotcl::Class C1
C1 instproc foo {} {puts "hello world"}

package require nx

Define a class with a public method foo using NX
nx::Class create C2 {

:public method foo {} {puts "hello world"}
}

}

1. Differences Between XOTcl and NX

- 5 -

2.1. Defining Objects and Classes

2.2. Defining Methods

One could certainly create object or classes from the different object systems via fully qualified names
(e.g. using e.g. ::xotcl::Class or ::nx::Class), but for migration for systems without explicit
namespaces switching between the object systems eases migration. "Switching" between XOTcl and NX
effectively means the load some packages (if needed) and to import either the base classes (Object and
Class) of XOTcl or NX into the current namespace.

2. XOTcl Idioms in the Next Scripting Language

The following sections are intended for reader familiar with XOTcl and show, how certain language
Idioms of XOTcl can be expressed in NX. In some cases, multiple possible realizations are listed

When creating objects or classes, one should use the method create explicitly. In XOTcl, a default
unknown method handler was provided for classes, which create for every unknown method invocation
an object/class with the name of the invoked method. This technique was convenient, but as well
dangerous, since typos in method names lead easily to unexpected behavior. This default unknown
method handler is not provided in NX (but can certainly be provided as a one-liner in NX by the
application).

XOTcl Next Scripting Language

Class ClassName Class create ClassName

Object ObjectName Object create ObjectName

In general, both XOTcl and NX support methods on the object level (per-object methods, i.e. methods
only applicable to a single object) and on the class level (methods inherited to instances of the classes).
While the naming in XOTcl tried to follow closely the Tcl tradition (using the term proc for functions/
methods), NX uses the term method for defining scripted methods.

XOTcl uses the prefix inst to denote that methods are provided for instances, calling therefore scripted
methods for instances instproc. This is certainly an unusual term. The approach with the name prefix
has the disadvantage, that for every different kind of method, two names have to be provided (e.g. proc
and instproc, forward and instforward).

NX on the contrary uses the same term for defining instance method or object-specific methods. When
the term (e.g. method) is used on a class, the method will be an instance method (i.e. applicable to the
instances of the class). When the term is used on an object with the modifier object, an object-specific
method is defined. This way one can define the same way object specific methods on an object as well
as on a class.

Furthermore, both XOTcl and NX distinguish between scripted methods (section 3.2.1) and C-defined
methods (section 3.2.2). Section 3.2.3 introduces method protection, which is only supported by NX.

2.2.1. Scripted Methods Defined in the Init-block of a Class/Object or with

2. XOTcl Idioms in the Next Scripting Language

- 6 -

Separate Calls

The following examples show the definition of a class and its methods in the init-block of a class (NX
only), and the definition of methods via separate top level calls (XOTcl and NX).

XOTcl Next Scripting Language

Define instance method 'foo' and object
method 'bar' for a Class 'C' with separate
toplevel commands

Class C
C instproc foo args {...}
C proc bar args {...}

Define instance method and object method
in the init-block of a class

Class create C {
:method foo args {...}
:object method bar args {...}

}

Define instance method and object method
with separate commands

Class create C
C method foo args {...}
C object method bar args {...}

Define object-specific method foo
for an object 'o' with separate commands

Object o
o set x 1
o proc foo args {...}

Define object method and set
instance variable in the init-block of
an object

Object create o {
set :x 1
:object method foo args {...}

}

Define object method and set
instance variable with separate
commands

Object create o
o eval {set :x 1}
o object method foo args {...}

2.2.2. Different Kinds of Methods

This section describes various kinds of methods. The different kinds of methods are defined via different
method-defining methods, which are summarized in the following table for XOTcl and NX.

XOTcl Next Scripting Language

Methods for defining methods:
#
proc
instproc
forward
instforward
parametercmd
instparametercmd
#
All these methods return empty.

Methods for defining methods:
#
alias
forward
method
#
All these methods return method-handles.

In addition to scripted methods (previous section) XOTcl supports forwarder (called forward and
instforward) and accessor functions to variables (called parametercmd and instparametercmd).
The accessor functions are used normally internally when object-specific parameters are defined (see
Section 3.4).

In NX forwarders are called forward. NX does not provide a public available method to define variable
accessors like parametercmd in XOTcl, but use internally the Next Scripting Framework primitive

2. XOTcl Idioms in the Next Scripting Language

- 7 -

nsf::method::setter when appropriate.

XOTcl Next Scripting Language

Class C
C instforward f1 ...
C forward f2 ...

Object o
o forward f3 ...

Define forwarder

Class create C {
:forward f1 ...
:object forward f2 ...

}

Object create o {
:object forward f3 ...

}

Define setter and getter methods in XOTcl.
#
XOTcl provides methods for these.

Class C
C instparametercmd p1
C parametercmd p2

Object o
o parametercmd p3

Define setter and getter methods in NX.
#
NX does not provide own methods, but uses
the low-level framework commands, since
application developer will only
need it in rare cases.

Class create C
::nsf::method::setter C p1
::nsf::method::setter C -per-object p2

Object create o
::nsf::method::setter o p3

NX supports in contrary to XOTcl the method alias which can be used to register arbitrary Tcl
commands or methods for an object or class under a provided method name. Aliases can be used to
reuse a certain implementation in e.g. different object systems under potentially different names. In
some respects aliases are similar to forwarders, but they do not involve forwarding overhead.

XOTcl Next Scripting Language

Method "alias" not available

Define method aliases
(to scripted or non-scripted methods)

Class create C {
:alias a1 ...
:object alias a2 ...

}

Object create o {
:object alias a3 ...

}

2.2.3. Method Modifiers and Method Protection

NX supports four method modifiers object, public, protected and private. All method
modifiers can be written in front of every method defining command. The method modifier object is
used to denote object-specific methods (see above). The concept of method protection is new in NX.

XOTcl Next Scripting Language

Method modifiers
#
"object",
"public",
"protected", and
"private"
#
are not available

Method modifiers
#
"object",
"public",
"protected"
#
are applicable for all kinds of
method defining methods:

2. XOTcl Idioms in the Next Scripting Language

- 8 -

XOTcl Next Scripting Language

#
method, forward, alias
#
The modifier "private" is available for
#
method, forward, alias
#
Class create C {

:/method-definition-method/ ...
:public /method-definition-method/ ...
:protected /method-definition-method/ ...
:private /method-definition-method/ ...
:object /method-definition-method/ ...
:public object /method-definition-method/ ...
:protected object /method-definition-method/ ...
:private object /method-definition-method/ ...

}

XOTcl does not provide method protection. In NX, all methods are defined per default as protected.
This default can be changed by the application developer in various ways. The command
::nx::configure defaultMethodCallProtection true|false can be used to set the default
call protection for scripted methods, forwarder and aliases. The defaults can be overwritten also on a
class level.

NX provides means for method hiding via the method modifier private. Hidden methods can be
invoked only via the -local flag, which means: "call the specified method defined in the same class/
object as the currently executing method".

XOTcl Next Scripting Language

XOTcl provides no means for
method hiding

Hiding of methods via "private"
#
nx::Class create Base {

:private method baz {a b} {expr {$a + $b}}
:public method foo {a b} {: -local baz $a $b}

}

nx::Class create Sub -superclass Base {
:public method bar {a b} {: -local baz $a $b}
:private method baz {a b} {expr {$a * $b}}

:create s1
}

s1 foo 3 4 ;# returns 7
s1 bar 3 4 ;# returns 12
s1 baz 3 4 ;# unable to dispatch method 'baz'

2.2.4. Method Deletion

NX provides an explicit delete method for the deletion of methods.

XOTcl Next Scripting Language

XOTcl provides only method deletion with
the equivalent of Tcl's "proc foo {} {}"
/cls/ instproc foo {} {}
/obj/ proc foo {} {}

Deletion of Methods
#
/cls/ delete method /name/
/obj/ delete object method /name/

2. XOTcl Idioms in the Next Scripting Language

- 9 -

2.3. Resolvers

The Next Scripting Framework defines Tcl resolvers for method and variable names to implement
object specific behavior. Within the bodies of scripted methods these resolver treat variable and
function names starting with a colon : specially. In short, a colon-prefixed variable name refers to
an instance variable, and a colon-prefixed function name refers to a method. The sub-sections below
provide detailed examples.

Note that the resolvers of the Next Scripting Framework can be used in the XOTcl 2.* environment as
well.

2.3.1. Invoking Methods

In XOTcl, a method of the same object can be invoked via my, or in general via using the name of the
object in front of the method name.

In NX, the own methods are called via the method name prefixed with a single colon. The invocation of
the methods of other objects is the same in NX and XOTcl.

XOTcl Next Scripting Language

Class C
C instproc foo args {...}
C instproc bar args {

my foo 1 2 3 ;# invoke own method
o baz ;# invoke other object's method

}
Object o
o proc baz {} {...}

Class create C {
:method foo args {...}
:method bar args {

:foo 1 2 3 ;# invoke own method
o baz ;# invoke other object's method

}
}
Object create o {

:public object method baz {} {...}
}

2.3.2. Accessing Own Instance Variables from Method Bodies

In general, the Next Scripting Language favors the access to an objects’s own instance variables over
variable accesses of other objects. This means that in NX it is syntactically easier to access the own
instance variables. On the contrary, in XOTcl, the variable access to own and other variables are fully
symmetric.

In XOTcl, the following approaches are used to access instance variables:

• Import instance variables via instvar and access variables via $varName

• Set or get instance variables via my set varName ?value? or other variable accessing
methods registered on xotcl::Object such as append, lappend, incr, etc.

• Register same-named accessor functions and set/get values of instance variables via my
varName ?value?

In NX, the favored approach to access instance variables is to use the name resolvers, although it is
as well possible to import variables via nx::var import or to check for the existence of instance
variables via nx::var exists.

The following examples summary the use cases for accessing the own and other instance variables.

XOTcl Next Scripting Language

Class C Class create C {

2. XOTcl Idioms in the Next Scripting Language

- 10 -

XOTcl Next Scripting Language

C instproc foo args {
Method scoped variable a
set a 1
Instance variable b
my instvar b
set b 2
Global variable/namespaced variable c
set ::c 3

}

:method foo args {...}
Method scoped variable a
set a 1
Instance variable b
set :b 2
Global variable/namespaced variable c
set ::c 3

}
}

... instproc ... {
my set /varName/ ?value?

}

Set own instance variable to a value via
resolver (preferred and fastest way)

... method ... {
set :/newVar/ ?value?

}

... instproc ... {
my instvar /varName/
set /varName/ ?value?

}

Set own instance variable via
variable import

... method ... {
::nx::var import [self] /varName/
set /varName/ ?value?

}

... instproc ... {
set /varName/ [my set /otherVar/]

}

Read own instance variable

... method ... {
set /varName/ [set :/otherVar/]

}

... method ... {
set /newVar/ ${:/otherVar/}

}

... instproc ... {
my exists /varName/

}

Test existence of own instance variable

... method ... {
info :/varName/

}

... method ... {
::nx::var exists [self] /varName/

}

2.3.3. Accessing Instance Variables of other Objects

XOTcl Next Scripting Language

/obj/ set /varName/ ?value?

Set instance variable of object obj to a
value via resolver
(preferred way: define property on obj)

/obj/ eval [list set :/varName/ ?value?]

set /varName/ [/obj/ set /otherVar/]
Read instance variable of object obj
via resolver

2. XOTcl Idioms in the Next Scripting Language

- 11 -

2.4. Parameters

XOTcl Next Scripting Language

set /varName/ [/obj/ eval {set :/otherVar/}]

... instproc ... {
/obj/ instvar /varName/
set /varName/ ?value?

}

Read instance variable of object /obj/
via import

... method ... {
::nx::var import /obj/ /varName/
set /varName/ ?value?

}

/obj/ exists varName

Test existence of instance variable of
object obj

/obj/ eval {info exists :/varName/}

::nx::var exists /obj/ /varName/

While XOTcl 1 had very limited forms of parameters, XOTcl 2 and NX provide a generalized and
highly orthogonal parameter machinery handling various kinds of value constraints (also called value
checkers). Parameters are used to specify,

• how objects and classes are initialized (we call these parameter types Configure Parameters),
and

• what values can be passed to methods (we call these Method Parameters).

Furthermore, parameters might be positional or non-positional, they might be optional or required,
they might have a defined multiplicity, and value-types, they might be introspected, etc. The Next
Scripting Framework provide a unified, C-implemented infrastructure to handle both, object and
method parameters in the same way with a high degree of orthogonality.

Configuration parameters were specified in XOTcl 1 primarily via the method parameter in a rather
limited way, XOTcl 1 only supported non-positional parameters in front of positional ones, supported
no value constraints for positional parameters, provided no distinction between optional and required,
and did not support multiplicity.

Furthermore, the Next Scripting Framework provides optionally Return Value Checking based on the
same mechanism to check whether some methods return always the values as specified.

2.4.1. Parameters for Configuring Objects: Variables and Properties

Configure parameters are used for specifying values for configuring objects when they are created (i.e.
how instance variables are initialized, what parameters can be passed in for initialization, what default
values are used, etc.). Such configuration parameters are supported in XOTcl primarily via the method
parameter, which is used in XOTcl to define multiple parameters via a list of parameter specifications.

Since the term "parameter" is underspecified, NX uses a more differentiated terminology. NX
distinguishes between configurable instance variables (also called properties) and non configurable
instance variables (called variables), which might have as well e.g. default values. The values of
configurable properties can be queried at runtime via cget, and their values can be altered via
configure. When the value of a configure parameter is provided or changed, the value checkers from
the variable definition are used to ensure, the value is permissible (i.e. it is for example an integer value).

2. XOTcl Idioms in the Next Scripting Language

- 12 -

The sum of all configurable object parameters are called configure parameters. To define a define
a configurable variable, NX uses the method property, for non-configurable variables, the method
variable is used.

Optionally, one can define in NX, that a property or a variable should have a public, protected or
private accessor. Such an accessor is a method with the same name as the variable. In XOTcl, every
parameter defined as well automatically a same-named accessor method, leading to potential name
conflicts with other method names.

In the examples below we show the definition of configurable a non-configurable instance variables
using variable and property respectively.

XOTcl Next Scripting Language

Define class "Foo" with instance
variables "x" and "y" initialized
on instance creation. The initialization
has to be performed in the constructor.

Class Foo
Foo instproc init args {

instvar x y
set x 1
set y 2

}

Create instance of the class Foo
Foo f1

Object f1 has instance variables
x == 1 and y == 2

Define class "Foo" with instance variables
"x" and "y" initialized on instance creation.
The method "variable" is similar in syntax
to Tcl's "variable" command. During
instance creation, the variable
definitions are used for the
initialization of the variables of the object.

Class create Foo {
:variable x 1
:variable y 2

}

Create instance of the class Foo
Foo create f1

Object f1 has instance variables
x == 1 and y == 2

While XOTcl follows a procedural way to initialize variables via the constructor init, NX follows a
more declarative approach. Often, classes have superclasses, which often want to provide their own
instance variables and default values. The declarative approach from NX solves this via inheritance,
while a procedural approach via assign statements in the constructor requires explicit constructor calls,
which are often error-prone. Certainly, when a user prefers to assign initial values to instance variables
via explicit assign operations in constructors, this is as well possible in NX.

NX uses the same mechanism to define class variables or object variables.

XOTcl Next Scripting Language

No syntactic support for creating
class variables

Define a object variable "V" with value 100 and
an instance variable "x". "V" is defined for the
class object Foo, "x" is defined in the
instances of the class. "object variable" works
similar to "object method".

Class create Foo {
:object variable V 100
:variable x 1

}

In the next step, we define configurable instance variables which we call properties in NX.

XOTcl uses the method parameter is a shortcut for creating multiple configurable variables with
automatically created accessors (methods for reading and writing of the variables). In NX, the preferred
way to create configurable variables is to use the method property. The method property in NX is
similar to variable, but makes the variables configurable, which means that

1. one can specify the property as a non-positional parameter upon creation of the object,

2. one can query the value via the method cget, and

2. XOTcl Idioms in the Next Scripting Language

- 13 -

3. one can modify the value of the underlying variable via the method configure.

XOTcl Next Scripting Language

Parameters specified as a list
(short form); parameter
"a" has no default, "b" has default "1"

Class Foo -parameter {a {b 1} {c "[info
tclversion]"}}

Create instance of the class Foo
Foo f1 -a 0

Object f1 has instance variables
a == 0 and b == 1

XOTcl registers automatically accessors
for the parameters. Use the accessor
"b" to output the value of variable "b"
puts [f1 b]

Use the setter to alter value of
instance variable "b"
f1 b 100

Return the substituted value of
parameter "c", something like 8.7.
XOTcl substitutes always when it sees
square brackets or dollar signs.
f1 c

Define property "a" and "b". The
property "a" has no default, "b" has
default value "1"

Class create Foo {
:property a
:property {b 1}
:property {c "[info tclversion]"}
:property {d:substdefault "[info tclversion]"}

}

Create instance of the class Foo
Foo create f1 -a 0

Object f1 has instance variables
a == 0 and b == 1

Use the method "cget" to query the value
of a configuration parameter
puts [f1 cget -b]

Use the method "configure" to alter the
value of instance variable "b"
f1 configure -b 100

Return the (non substituted) value of
parameter "c", and the substituted value
of parameter "d"
f1 cget -c
f1 cget -d

In general, NX allows one to create variables and properties with and without accessor methods.
The created accessor methods might be public, protected or public. When the value none is
provided to -accessor, no accessor will be created. This is actually the default in NX. In order
to change the default behavior in NX, one can use ::nx::configure defaultAccessor
none|public|protected|private.

XOTcl Next Scripting Language

"parameter" creates always accessor
methods, accessor methods are
always public, no "cget" is available.

Class create Foo -parameter {a {b 1}}

Use the accessor method to query
the value of a configuration parameter
puts [f1 b]

Use the accessor method to set the
value of instance variable "a"
f1 a 100

Use the accessor method to unset the
value of instance variable "a" n.a. via
accessor

Define property "a" and "b". The
property "a" has no default, "b" has
default value "1"

Class create Foo {
:variable -accessor public a
:property -accessor public {b 1}

}

Use the accessor method to query
the value of a configuration parameter
puts [f1 b get]

Use the accessor method to set the
value of instance variable "a"
f1 a set 100

Use the accessor method to unset the
value of instance variable "a"
f1 a unset

Similar to variable, properties can be defined in NX on the class and on the object level.

2. XOTcl Idioms in the Next Scripting Language

- 14 -

XOTcl Next Scripting Language

XOTcl provides no means to define
configurable variables at the object
level

Define class with a property for the class object
named "cp". This is similar to "static variables"
in some other object-oriented programming
languages.

Class create Foo {
...
:object property cp 101

}

Define object property "op"

Object create o {
:object property op 102

}

NX supports value constraints (value-checkers) for object and method parameters in an orthogonal
manner. NX provides a predefined set of value checkers, which can be extended by the application
developer. In NX, the value checking is optional. This means that it is possible to develop e.g. which
a large amount of value-checking and deploy the script with value checking turned off, if the script is
highly performance sensitive.

XOTcl Next Scripting Language

No value constraints for
parameter available

Predefined value constraints:
object, class, alnum, alpha, ascii, boolean,
control, digit, double, false, graph, integer,
lower, parameter, print, punct, space, true,
upper, wordchar, xdigit
#
User defined value constraints are possible.
All parameter value checkers can be turned on
and off at runtime.
#
Define a required boolean property "a"
and an integer property "b" with a default.
The first definition uses "properties",
the second definition uses multiple
"property" statements.

Class create Foo -properties {
a:boolean
{b:integer 1}

}

Class create Foo {
:property a:boolean
:property {b:integer 1}

}

In XOTcl all configure parameters were optional. Required parameters have to be passed to the
constructor of the object.

NX allows one to define optional and required configure parameters (as well as method parameters).
Therefore, configure parameters can be used as the single mechanism to parametrize objects. It is in NX
not necessary (and per default not possible) to pass arguments to the constructor.

XOTcl Next Scripting Language

Required parameter not available

Required parameter:
Define a required property "a" and a
required boolean property "b"

Class create Foo -properties {

2. XOTcl Idioms in the Next Scripting Language

- 15 -

XOTcl Next Scripting Language

a:required
b:boolean,required

}

Class create Foo {
:property a:required
:property b:boolean,required

}

NX supports in contrary to XOTcl to define the multiplicity of values per parameter. In NX, one can
specify that a parameter can accept the value "" (empty) in addition to e.g. an integer, or one can specify
that the value is an empty or non-empty list of values via the multiplicity. For every specified value, the
value checkers are applied.

XOTcl Next Scripting Language

Multiplicity for parameter
not available

Parameter with multiplicity
ints is a list of integers, with default
objs is a non-empty list of objects
obj is a single object, maybe empty

Class create Foo -properties {
{ints:integer,0..n ""}
objs:object,1..n
obj:object,0..1

}

Class create Foo {
:property {ints:integer,0..n ""}
:property objs:object,1..n
:property obj:object,0..1

}

For the implementation of variables and properties, NX uses slot objects, which are an extension to the
-slots already available in XOTcl. While very for every property in NX, a slot object is created, for
performance reasons, not every variable has a slot associated.

When a property is created, NX does actually three things:

1. Create a slot object, which can be specified in more detail using the init-block of the slot object

2. Create a parameter definition for the initialization of the object (usable via a non-positional
parameter during object creation), and

3. register optionally an accessor function (setter), for which the usual protection levels (public,
protected or private) can be used.

XOTcl Next Scripting Language

Define parameters via slots

Class Foo -slots {
Attribute a
Attribute b -default 1

}

Create instance of the class Foo
and provide a value for instance
variable "a"
Foo f1 -a 0

Object f1 has a == 0 and b == 1

Configurable parameters specified via the
method "property" (supports method
modifiers and scripted configuration;
see below)

Class create Foo {
:property a
:property {b 1}

}

Create instance of the class Foo and
provide a value for instance variable "a"
Foo create f1 -a 0

2. XOTcl Idioms in the Next Scripting Language

- 16 -

XOTcl Next Scripting Language

Object f1 has a == 0 and b == 1

Since the slots are objects, the slot objects can be configured and parametrized like every other object
in NX. Slot objects can be provided with a scripted initialization as well. We show first the definition of
properties similar to the functionality provided as well by XOTcl and show afterwards how to use value
constraints, optional parameters, etc. in NX.

XOTcl Next Scripting Language

Define parameter with an
attribute-specific type checker

Class Person -slots {
Attribute create sex -type "sex" {

my proc type=sex {name value} {
switch -glob $value {

m* {return m}
f* {return f}
default {

error "expected sex but got $value"
}

}
}

}
}

Configure parameter with scripted
definition (init-block), defining a
property specific type checker

Class create Person {
:property -accessor public sex:sex,convert {

define a converter to standardize
representation

:object method type=sex {name value} {
switch -glob $value {

m* {return m}
f* {return f}
default {error "expected sex but got

$value"}
}

}

}
}

The parameters provided by a class for the initialization of instances can be introspected via querying
the parameters of the method create: /cls/ info lookup parameters create (see
[info_configure_parameter]).

2.4.2. Delete Variable Handlers

XOTcl Next Scripting Language

No syntactic support for deleting
variable handlers

Like deletion of Methods:
Delete on the object, where the
variable handler is defined.

/cls/ delete property /name/
/obj/ delete object property /name/

/cls/ delete variable /name/
/obj/ delete object variable /name/

2.4.3. Method Parameters

Method parameters are used to specify the interface of a single method (what kind of values may be
passed to a method, what default values are provided etc.). The method parameters specifications in
XOTcl 1 were limited and allowed only value constraints for non positional arguments.

NX and XOTcl 2 provide value constraints for all kind of method parameters. While XOTcl 1 required
non-positional arguments to be listed in front of positional arguments, this limitation is lifted in XOTcl
2.

2. XOTcl Idioms in the Next Scripting Language

- 17 -

XOTcl Next Scripting Language

Define method foo with non-positional
parameters (x, y and y) and positional
parameter (a and b)

Class C
C instproc foo {

-x:integer
-y:required
-z
a
b

} {
...

}
C create c1

invoke method foo
c1 foo -x 1 -y a 2 3

Define method foo with
non-positional parameters
(x, y and y) and positional
parameter (a and b)

Class create C {
:public method foo {

-x:integer
-y:required
-z
a
b

} {
...

}
:create c1

}
invoke method foo
c1 foo -x 1 -y a 2 3

Only leading non-positional
parameters are available; no
optional positional parameters,
no value constraints on
positional parameters,
no multiplicity, ...

Define various forms of parameters
not available in XOTcl 1

Class create C {
trailing (or interleaved) non-positional
parameters
:public method m1 {a b -x:integer -y} {

...
}

positional parameters with value constraints
:public method m2 {a:integer b:boolean} {

#...
}

optional positional parameter (trailing)
:public method set {varName value:optional} {

....
}

parameter with multiplicity
:public method m3 {-objs:object,1..n

c:class,0..1} {
...

}

In general, the same list of value
constraints as for configure parameter is
available (see above).
#
User defined value constraints are
possible. All parameter value checkers
can be turned on and off.

}

2.4.4. Return Value Checking

Return value checking is a functionality available in the Next Scripting Framework, that was not yet
available in XOTcl 1. A return value checker assures that a method returns always a value satisfying
some value constraints. Return value checkers can be defined on all forms of methods (scripted or C-
implemented). Like for other value checkers, return value checkers can be turned on and off.

XOTcl Next Scripting Language

No return value checking
available

Define method foo with non-positional
parameters (x, y and y) and positional
parameter (a and b)

Class create C {

2. XOTcl Idioms in the Next Scripting Language

- 18 -

2.5. Interceptors

XOTcl Next Scripting Language

Define method foo which returns an
integer value
:method foo -returns integer {-x:integer} {

...
}

Define an alias for the Tcl command ::incr
and assure, it always returns an integer
value
:alias incr -returns integer ::incr

Define a forwarder that has to return an
integer value
:forward ++ -returns integer ::expr 1 +

Define a method that has to return a
non-empty list of objects
:public object method instances {} \

-returns object,1..n {
return [:info instances]

}
}

XOTcl and NX allow the definition of the same set of interceptors, namely class- and object-level mixins
and class- and object-level filters. The primary difference in NX is the naming, since NX abandons the
prefix "inst" from the names of instance specific method, but uses the modifier object" for object
specific methods.

Therefore, in NX, if a mixin is registered on a class-level, it is applicable for the instances (a per-class
mixin), and if and object mixin is registered, it is a per-object mixin. In both cases, the term mixin
is used, in the second case with the modifier object. As in all other cases, one can register the same
way a per-object mixin on a plain object or on a class object.

2.5.1. Register Mixin Classes and Mixin Guards

XOTcl Next Scripting Language

/cls/ instmixin ...
/cls/ instmixinguard /mixin/ ?condition?

Query per-class mixin
/cls/ instmixin

Register/clear per-class mixin and guard for
a class

/cls/ mixins add|set|clear ...
/cls/ mixins guard /mixin/ ?condition?
/cls/ configure -mixin ...

Query per-class mixins
/cls/ mixins get
/cls/ cget -mixins

Query per-class mixins (without guards)
/cls/ mixins classes

/obj/ mixin ...
/obj/ mixinguard /mixin/ ?condition?

Query per-object mixins
/obj/ mixin

Register/clear per-object mixin and guard for
an object

/obj/ object mixins add|set|clear ...
/obj/ object mixins guard /mixin/ ?condition?
/obj/ configure -object-mixins ...

Query per-object mixin
/obj/ object mixins get

2. XOTcl Idioms in the Next Scripting Language

- 19 -

2.6. Introspection

XOTcl Next Scripting Language

/obj/ cget -object-mixin

Query per-object mixins (without guards)
/cls/ mixins classes

2.5.2. Register Filters and Filter Guards

XOTcl Next Scripting Language

Register per-class filter and guard for
a class
/cls/ instfilter ...
/cls/ instfilterguard /filter/ ?condition?

Query per-class filter
/cls/ instfilter

Register/clear per-class filter and guard for
a class

/cls/ filters add|set|clear ...
/cls/ filters guard /filter/ ?condition?
/cls/ configure -filters ...

Query per-class filters
/cls/ filters get
/cls/ cget -filters

Query per-class filters (without guards)
/cls/ filters methods

/obj/ filter ...
/obj/ filterguard /filter/ ?condition?

Register(clear per-object filter and guard for
an object

/obj/ object filters add|set|clear ...
/obj/ object filters guard /filter/ ?condition?
/obj/ configure -object-filters ...

Query per-object filters
/cls/ object filters get
/obj/ cget -object-filters

Query per-object filters (without guards)
/cls/ object filters methods

In general, introspection in NX became more orthogonal and less dependent on the type of the method.
In XOTcl it was e.g. necessary that a developer had to know, whether a method is e.g. scripted or not
and has to use accordingly different sub-methods of info.

In NX, one can use e.g. always info method with a subcommand and the framework tries to hide
the differences as far as possible. So, one can for example obtain with info method parameter
the parameters of scripted and C-implemented methods the same way, one can get the definition of all
methods via info method definition and one can get an manual-like interface description via
info method syntax. In addition, NX provides means to query the type of a method, and NX allows
one to filter by the type of the method.

2.6.1. List sub- and superclass relations

While XOTcl used singular words for introspecting sub- and superclass relations, NX uses plural word
to indicate that potentially a list of values is returned.

2. XOTcl Idioms in the Next Scripting Language

- 20 -

XOTcl Next Scripting Language

/cls/ info superclass ?pattern? /cls/ info superclasses ?pattern?

/cls/ info subclass ?pattern? /cls/ info subclasses -type setter ?pattern?

2.6.2. List methods defined by classes

While XOTcl uses different names for obtaining different kinds of methods defined by a class, NX uses
info methods in an orthogonal manner. NX allows as well to use the call protection to filter the
returned methods.

XOTcl Next Scripting Language

/cls/ info instcommands ?pattern? /cls/ info methods ?pattern?

/cls/ info instparametercmd ?pattern? /cls/ info methods -type setter ?pattern?

/cls/ info instprocs ?pattern? /cls/ info methods -type scripted ?pattern?

n.a.

/cls/ info methods -type alias ?pattern?
/cls/ info methods -type forwarder ?pattern?
/cls/ info methods -type object ?pattern?
/cls/ info methods -callprotection
public|protected ...

2.6.3. List methods defined by objects

While XOTcl uses different names for obtaining different kinds of methods defined by an object, NX
uses info methods in an orthogonal manner. NX allows as well to use the call protection to filter the
returned methods.

XOTcl Next Scripting Language

/obj/ info commands ?pattern? /obj/ info object methods ?pattern?

/obj/ info parametercmd ?pattern? /obj/ info object methods -type setter ?pattern?

/obj/ info procs ?pattern? /obj/ info object methods -type scripted ?pattern?

n.a.

/obj/ info object methods -type alias ?pattern?
/obj/ info object methods -type forwarder ?pattern?
/obj/ info object methods -type object ?pattern?
/obj/ info object methods -callprotection
public|protected ...

2. XOTcl Idioms in the Next Scripting Language

- 21 -

2.6.4. Check existence of a method

NX provides multiple ways of checking, whether a method exists; one can use info method exists
to check, if a given method exists (return boolean), or one can use info methods ?pattern?, where
pattern might be a single method name without wild-card characters. The method info methods
?pattern? returns a list of matching names, which might be empty. These different methods appear
appropriate depending on the context.

XOTcl Next Scripting Language

/obj|cls/ info \
[inst](commands|procs|parametercmd) \
?pattern?

/cls/ info method exists /methodName/
/cls/ info methods /methodName/
/obj/ info object method exists /methodName/
/obj/ info object methods /methodName/

2.6.5. List callable methods

In order to obtain for an object the set of artefacts defined in the class hierarchy, NX uses info
lookup. One can either lookup methods (via info lookup methods) or slots (via info lookup
slots). The plural term refers to a potential set of return values.

XOTcl Next Scripting Language

/obj/ info methods ?pattern?
/obj/ info lookup methods ... ?pattern?
Returns list of method names

n.a.

List only application specific methods
/obj/ info lookup methods -source application ...
?pattern?
Returns list of method names

Options for 'info methods'
#
-incontext
-nomixins

Options for 'info lookup methods'
#
-source ...
-callprotection ...
-incontext
-type ...
-nomixins

n.a.

List slot objects defined for obj
-source might be all|application|baseclasses
-type is the class of the slot object

/obj/ info lookup slots ?-type ...? ?-source ...?
?pattern?

Returns list of slot objects

List registered filters
/obj/ info filters -order ?-guards? ?pattern?

List registered mixins
/obj/ info mixins -heritage ?-guards? ?pattern?

List registered filters
/obj/ info lookup filters ?-guards? ?pattern?

List registered mixins
/obj/ info lookup mixins ?-guards? ?pattern?

2.6.6. List object/class where a specified method is defined

info lookup can be used as well to determine, where exactly an artefact is located. One can obtain

2. XOTcl Idioms in the Next Scripting Language

- 22 -

this way a method handle, where a method or filter is defined.

The concept of a method-handle is new in NX. The method-handle can be used to obtain more
information about the method, such as e.g. the definition of the method.

XOTcl Next Scripting Language

/obj/ procsearch /methodName/
/obj/ info lookup method /methodName/
Returns method-handle

/obj/ filtersearch /methodName/
/obj/ info lookup filter /methodName/
Returns method-handle

2.6.7. List definition of scripted methods

XOTcl contains a long list of info subcommands for different kinds of methods and for obtaining more
detailed information about these methods.

In NX, this list of info subcommands is much shorter and more orthogonal. For example info
method definition can be used to obtain with a single command the full definition of a scripted
method, and furthermore, it works as well the same way to obtain e.g. the definition of a forwarder or
an alias.

While XOTcl uses different names for info options for objects and classes (using the prefix "inst" for
instance specific method), NX uses for object specific method the modifier object. For definition of
class object specific methods, use the modifier object as usual.

XOTcl Next Scripting Language

n.a.
/cls/ info method definition /methodName/
/obj/ info object method definition /methodName/

/cls/ info instbody /methodName/
/obj/ info body /methodName/

/cls/ info method body /methodName/
/obj/ info object method body /methodName/

/cls/ info instargs /methodName/
/obj/ info args /methodName/

/cls/ info method args /methodName/
/obj/ info object method args /methodName/

/cls/ info instnonposargs /methodName/
/obj/ info object method args /methodName/

/cls/ info method parameter /methodName/
/obj/ info object method parameter /methodName/

/cls/ info instdefault /methodName/
/obj/ info default /methodName/

not needed, part of
"info ?object? method parameter"

/cls/ info instpre /methodName/
/obj/ info pre /methodName/

/cls/ info method precondition /methodName/
/obj/ info object method precondition /methodName/

/cls/ info instpost /methodName/
/obj/ info post /methodName/

/cls/ info method postcondition /methodName/
/obj/ info object method postcondition /methodName/

2. XOTcl Idioms in the Next Scripting Language

- 23 -

Another powerful introspection option in NX is info ?object? method syntax which obtains a
representation of the parameters of a method in the style of Tcl man pages (regardless of the kind of
method).

XOTcl Next Scripting Language

n.a.
/cls/ info method syntax /methodName/
/obj/ info object method syntax /methodName/

2.6.8. List Configure Parameters

The way, how newly created objects can be configured is determined in NX via properties. The
configuration happens during creation via the methods create or new or during runtime via
configure. These methods have therefore virtual argument lists, depending on the object or class on
which they are applied.

XOTcl Next Scripting Language

n.a.

Return the parameters applicable to
the create method of a certain class.
class can be configured. A pattern can
be used to filter the results.

/cls/ info lookup parameters create ?/pattern/?

Return in the result in documentation syntax

/cls/ info lookup syntax create ?/pattern/?

"info lookup parameters configure" returns
parameters available for configuring the
current object (might contain object
specific information)

/obj/ info lookup parameters configure ?pattern?

"info lookup configure syntax" returns syntax of
a call to configure in the Tcl parameter syntax

/obj/ info lookup syntax configure

Obtain information from a parameter
(as e.g. returned from "info lookup
parameters configure").

nsf::parameter::info name /parameter/
nsf::parameter::info syntax /parameter/
nsf::parameter::info type /parameter/

2.6.9. List Variable Declarations (property and variable)

XOTcl Next Scripting Language

obtain parameter definitions defined
for a class
/cls/ info parameter

"info variables" returns handles of
properties and variables defined by this
class or object

/cls/ info variables ?pattern?
/obj/ info object variables ?pattern?

"info lookup variables" returns handles
of variables and properties applicable
for the current object (might contain
object specific information)

/obj/ info lookup variables /pattern/

2. XOTcl Idioms in the Next Scripting Language

- 24 -

XOTcl Next Scripting Language

"info variable" lists details about a
single property or variable.

/obj/ info variable definition /handle/
/obj/ info variable name /handle/
/obj/ info variable parameter /handle/

2.6.10. List Slots

XOTcl Next Scripting Language

n.a.

Return list of slots objects defined on the
object or class
#
-source might be all|application|baseclasses
-type is the class of the slot object
-closure includes slots of superclasses

/cls/ info slots \
?-type value? ?-closure? ?-source value?

?pattern?
/obj/ info object slots ?-type ...? ?pattern?

List reachable slot objects defined for obj
-source might be all|application|baseclasses
-type is the class of the slot object
Returns list of slot objects.

/obj/ info lookup slots \
?-type ...? ?-source ... ?pattern?

Obtain definition, name or parameter from
slot object

/slotobj/ definition
/slotobj/ name
/slotobj/ parameter

2.6.11. List Filter or Mixins

In NX all introspection options for filters are provided via info filters and all introspection options
for mixins are provided via info mixins.

XOTcl Next Scripting Language

/obj/ info filter ?-guards? ?-order? ?pattern?
/obj/ info filterguard /name/

/obj/ info object filters \
?-guards? ?pattern?

/cls/ info instfilter \
?-guards? ?-order? ?pattern?

/cls/ info instfilterguard /name/

/cls/ info filters \
?-guards? ?pattern?

/obj/ info mixin ?-guards? ?-order ?pattern?
/obj/ info mixinguard /name/

/obj/ info object mixins \
?-guards? ?pattern?

/cls/ info instmixin \
?-guards? ?-order? ?pattern?

/cls/ info instmixinguard /name/

/cls/ info mixins \
?-closure? ?-guards? ?-heritage? ?pattern?

2. XOTcl Idioms in the Next Scripting Language

- 25 -

2.6.12. List definition of methods defined by aliases, setters or forwarders

As mentioned earlier, info method definition can be used on every kind of method. The same
call can be used to obtain the definition of a scripted method, a method-alias, a forwarder or a setter
method.

XOTcl Next Scripting Language

n.a.
/cls/ info method definition /methodName/
/obj/ info object method definition /methodName/

2.6.13. List Method-Handles

NX supports method-handles to provide means to obtain further information about a method or to
change maybe some properties of a method. When a method is created, the method creating method
returns the method handle to the created method.

XOTcl Next Scripting Language

n.a.

#
List the method handle of the specified method,
can be used e.g. for aliases. "handle" is the
short
form of "definitionhandle".
#
/cls/ info method handle /methodName/
/obj/ info object method handle /methodName/
#
For ensemble methods (method name contains
spaces) one can query as well the registration
handle, which is the handle to the root of the
ensemble; the definition handle points to the
leaf of the ensemble.
#
/cls/ info method registrationhandle /methodName/
/obj/ info object method registrationhandle
/methodName/
#
For aliases, one can query the original
definition via "info method origin"
#
/cls/ info method origin /methodName/
/obj/ info object method origin /methodName/

2.6.14. List type of a method

The method info ?object? method type is new in NX to obtain the type of the specified method.

XOTcl Next Scripting Language

n.a.
/cls/ info method type /methodName/
/obj/ info object method type /methodName/

2.6.15. List the scope of mixin classes

NX provides a richer set of introspection options to obtain information, where mixins classes are mixed
into.

2. XOTcl Idioms in the Next Scripting Language

- 26 -

XOTcl Next Scripting Language

/cls/ info mixinof ?-closure? ?pattern?

List objects, where /cls/ is a
per-object mixin

/cls/ info mixinof -scope object ?-closure? \
?pattern?

/cls/ info instmixinof ?-closure? ?pattern?

List classes, where /cls/ is a per-class mixin

/cls/ info mixinof -scope class ?-closure? \
?pattern?

n.a.

List objects and classes, where /cls/ is
either a per-object or a per-class mixin

/cls/ info mixinof -scope all ?-closure? \
?pattern?

/cls/ info mixinof ?-closure? ?pattern?

2.6.16. Check properties of object and classes

Similar as noted before, NX uses rather a hierarchical approach of naming using multiple layers of
subcommands).

XOTcl Next Scripting Language

/obj/ istype /sometype/
Check if object is a subtype of some class
/obj/ info has type /sometype/

/obj/ ismixin /cls/
Check if object has the specified mixin
registered
/obj/ info has mixin /cls/

/obj/ isclass ?/cls/?

Check if object is an NX class
/obj/ has type ::nx::Class

Check if object is a class in one of the
NSF object systems
::nsf::is class /obj/

/obj/ ismetaclass /cls/

Check if class is an NX metaclass
expr {[/cls/ info heritage ::nx::Class] ne ""}

Check if object is a metaclass in one of the
NSF object systems
::nsf::is metaclass /obj/

n.a.
Check if object is a baseclass of an object
system
::nsf::is baseclass /obj/

n.a. # Return name of object (without namespace prefix)

2. XOTcl Idioms in the Next Scripting Language

- 27 -

XOTcl Next Scripting Language

/obj/ info name

/obj/ object::exists /obj/
Check for existence of object (nsf primitive)
::nsf::object::exists /obj/

2.6.17. Call-stack Introspection

Call-stack introspection is very similar in NX and XOTcl. NX uses for subcommand the term current
instead of self, since self has a strong connotation to the current object. The term proc is renamed
by method.

XOTcl Next Scripting Language

self

self

current object

self class current class

self args current args

self proc current method

self callingclass current calledclass

self callingobject current callingobject

self callingproc current callingmethod

self calledclass current calledclass

self calledproc current calledmethod

self isnextcall current isnextcall

self next
Returns method-handle of the
method to be called via "next"
current next

2. XOTcl Idioms in the Next Scripting Language

- 28 -

2.7. Other Predefined Methods

2.8. Dispatch, Aliases, etc.

2.9. Assertions

XOTcl Next Scripting Language

self filterreg
Returns method-handle of the
filter method
current filterreg

self callinglevel current callinglevel

self activelevel current activelevel

XOTcl Next Scripting Language

/obj/ requireNamespace /obj/ require namespace

n.a. /obj/ require method

todo: to be done or omitted

In contrary to XOTcl, NX provides no pre-registered methods for assertion handling. All assertion
handling can e performed via the Next Scripting primitive nsf::method::assertion.

XOTcl Next Scripting Language

/obj/ check /checkoptions/ ::nsf::method::assertion /obj/ check /checkoptions/

/obj/ info check ::nsf::method::assertion /obj/ check

/obj/ invar /conditions/
::nsf::method::assertion /obj/ object-invar
/conditions/

/obj/ info invar ::nsf::method::assertion /obj/ object-invar

2. XOTcl Idioms in the Next Scripting Language

- 29 -

2.10. Method Protection

3.1. Resolvers

3.2. Parameters

XOTcl Next Scripting Language

/cls/ instinvar /conditions/
::nsf::method::assertion /cls/ class-invar
/conditions/

/cls/ info instinvar ::nsf::method::assertion /cls/ class-invar

/cls/ invar /conditions/
::nsf::method::assertion /cls/ object-invar
/conditions/

/cls/ info invar ::nsf::method::assertion /cls/ object-invar

As described above, NX supports method protection via the method modifiers protected and
public. A protected method can be only called from an object of that class, while public methods can
be called from every object. The method protection can be used to every kind of method, such as e.g.
scripted methods, aliases, forwarders, or accessors. For invocations, the most specific definition (might
be a mixin) is used for determining the protection.

3. Incompatibilities between XOTcl 1 and XOTcl 2

The resolvers (variable resolvers, function resolvers) of the Next Scripting Framework are used as well
within XOTcl 2. When variable names or method names starting with a single colon are used in XOTcl
1 scripts, conflicts will arise with the resolver. These names must be replaced.

The following changes for parameters could be regarded as bug-fixes.

3.2.1. Parameter usage without a value

In XOTcl 1, it was possible to call a parameter method during object creation via the dash-interface
without a value (in the example below -x).

XOTcl example

Class Foo -parameter {x y}
Foo f1 -x -y 1

Such cases are most likely mistakes. All parameter configurations in XOTcl 2 require an argument.

3. Incompatibilities between XOTcl 1 and XOTcl 2

- 30 -

3.3. Slots

3.4. Obsolete Commands

3.5. Stronger Checking

3.2.2. Ignored Parameter definitions

In XOTcl 1, a more specific parameter definition without a default was ignored when a more general
parameter definition with a default was present. In the example below, the object b1 contained in XOTcl
1 incorrectly the parameter x (set via default from Foo), while in XOTcl 2, the variable won’t be set.

XOTcl example

Class Foo -parameter {{x 1}}
Class Bar -superclass Foo -parameter x
Bar b1

3.2.3. Changing classes and superclasses

NX does not define the methods class and superclass (like XOTcl), but allows one to alter all
object/class relations (including class/superclass/object-mixin/…) nsf::relation::set. The class
and superclass can be certainly queried in all variants with info class or info superclasses.

NX example

nx::Class create Foo
Foo create f1

now alter the class of object f1
nsf::relation::set f1 class ::nx::Object

3.2.4. Overwriting procs/methods with objects and vice versa

NSF is now more conservative on object/method creation. In contrary to XOTcl 1 NSF does not allow
one to redefined a pre-existing command (e.g. "set") with an object and vice versa. Like in XOTcl 1,
preexisting objects and classes con be redefined (necessary for reloading objects/classes in a running
interpreter).

3.2.5. Info heritage

info heritage returns in XOTcl 1 the transitive superclass hierarchy, which is equivalent with info
superclasses -closure and therefore not necessary. In XOTcl 2 (and NX), info heritage
includes as well the transitive per-class mixins.

All slot objects (also XOTcl slot objects) are now next-scripting objects of baseclass ::nx::Slot. The
name of the experimental default-setter initcmd was changed to defaultcmd. Code directly working
on the slots objects has to be adapted.

Parameter-classes were rarely used and have been replaced by the more general object parametrization.
Therefore, cl info parameterclass has been removed.

The Next Scripting Framework performs stronger checking than XOTcl 1 For example, the requiredness
of slots in XOTcl 1 was just a comment, while XOTcl 2 enforces it.

3. Incompatibilities between XOTcl 1 and XOTcl 2

- 31 -

3.6. Exit Handlers

Version 2.3.0
Last updated 2019-05-07 11:33:18 CEST

The exit handler interface changed from a method of ::xotcl::Object into the Tcl command
::nsf::exithandler:

NX example
::nsf::exithandler set|get|unset ?arg?

3. Incompatibilities between XOTcl 1 and XOTcl 2

- 32 -

	Migration Guide for the Next Scripting Language
	1. Differences Between XOTcl and NX
	1.1. Features of NX
	1.2. NX and XOTcl Scripts
	1.3. Using XOTcl 2.0 and the Next Scripting Language in a Single Interpreter

	2. XOTcl Idioms in the Next Scripting Language
	2.1. Defining Objects and Classes
	2.2. Defining Methods
	2.2.1. Scripted Methods Defined in the Init-block of a Class/Object or with Separate Calls
	2.2.2. Different Kinds of Methods
	2.2.3. Method Modifiers and Method Protection
	2.2.4. Method Deletion

	2.3. Resolvers
	2.3.1. Invoking Methods
	2.3.2. Accessing Own Instance Variables from Method Bodies
	2.3.3. Accessing Instance Variables of other Objects

	2.4. Parameters
	2.4.1. Parameters for Configuring Objects: Variables and Properties
	2.4.2. Delete Variable Handlers
	2.4.3. Method Parameters
	2.4.4. Return Value Checking

	2.5. Interceptors
	2.5.1. Register Mixin Classes and Mixin Guards
	2.5.2. Register Filters and Filter Guards

	2.6. Introspection
	2.6.1. List sub- and superclass relations
	2.6.2. List methods defined by classes
	2.6.3. List methods defined by objects
	2.6.4. Check existence of a method
	2.6.5. List callable methods
	2.6.6. List object/class where a specified method is defined
	2.6.7. List definition of scripted methods
	2.6.8. List Configure Parameters
	2.6.9. List Variable Declarations (property and variable)
	2.6.10. List Slots
	2.6.11. List Filter or Mixins
	2.6.12. List definition of methods defined by aliases, setters or forwarders
	2.6.13. List Method-Handles
	2.6.14. List type of a method
	2.6.15. List the scope of mixin classes
	2.6.16. Check properties of object and classes
	2.6.17. Call-stack Introspection

	2.7. Other Predefined Methods
	2.8. Dispatch, Aliases, etc.
	2.9. Assertions
	2.10. Method Protection

	3. Incompatibilities between XOTcl 1 and XOTcl 2
	3.1. Resolvers
	3.2. Parameters
	3.2.1. Parameter usage without a value
	3.2.2. Ignored Parameter definitions
	3.2.3. Changing classes and superclasses
	3.2.4. Overwriting procs/methods with objects and vice versa
	3.2.5. Info heritage

	3.3. Slots
	3.4. Obsolete Commands
	3.5. Stronger Checking
	3.6. Exit Handlers

